logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-11172025-090313


Tipo di tesi
Tesi di laurea magistrale
Autore
SARACINO, MARIO
URN
etd-11172025-090313
Titolo
Listening, Lyrics, and Links: A Multiplex Network Approach to Music Community Discovery
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Rossetti, Giulio
correlatore Citraro, Salvatore
Parole chiave
  • ai
  • artificial intelligence
  • community detection
  • multilayer network
  • multiplex network
  • music discovery
  • network science
  • social network analysis
Data inizio appello
04/12/2025
Consultabilità
Completa
Riassunto
This thesis applies multiple network analysis to last.fm data (120,000 users and 4,028 artists) to detect music communities. We construct two-layer networks capturing behavioral similarity (shared listeners) and thematic similarity (lyrical content via textual forma mentis networks), comparing flattening, layer-by-layer (M-EMCD) and multilayer (Glouvain) community detection algorithms. The work reveals how communities emerge from the interaction between listening patterns and thematic preferences.
File