Tesi etd-11072025-215323 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PALLA, ALESSANDRO
URN
etd-11072025-215323
Titolo
Design Approaches for Reliability Enhancement in Space: Performance Impact and Implementation of Fault Mitigation Solutions on a CGRA-Based Architecture
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA ELETTRONICA
Relatori
relatore Prof. Fanucci, Luca
relatore Prof. Nannipieri, Pietro
relatore Ing. Mystkowska, Gabriela
relatore Ing. Monopoli, Matteo
relatore Prof. Nannipieri, Pietro
relatore Ing. Mystkowska, Gabriela
relatore Ing. Monopoli, Matteo
Parole chiave
- affidabilità
- CGRA
- effetti da particella singola
- fault injection test
- fault mitigation techniques
- radiation
- radiazioni
- reliability
- single event effects
- space
- spazio
- standard cells
- tecniche di mitigazione di guasti
- test di iniezione di guasti
- VHDL
Data inizio appello
05/12/2025
Consultabilità
Non consultabile
Data di rilascio
05/12/2095
Riassunto
Al giorno d’oggi, le architetture hardware riconfigurabili rappresentano un elemento chiave dei sistemi spaziali grazie alla loro adattabilità ed efficienza. Tuttavia, nell’ambiente spaziale è fondamentale garantire l’integrità delle informazioni ed evitare malfunzionamenti, poiché le architetture installate sui satelliti sono esposte a guasti indotti dalle radiazioni che possono compromettere l’intero sistema. Le tecniche di mitigazione, hardware e software, costituiscono quindi un livello essenziale di protezione. Sulla base di queste motivazioni, questo lavoro studia come applicare in modo sistematico tecniche di mitigazione degli effetti radiativi sviluppando una nuova metodologia per l’analisi delle architetture digitali e l’identificazione delle soluzioni più adatte ad aumentarne la resilienza e l'affidabilità. La metodologia è stata applicata a una Coarse-Grained Reconfigurable Architecture (CGRA) sviluppata presso l’Università di Pisa. È stata condotta un’analisi approfondita della CGRA, valutando criticità, area e consumo di potenza dei principali blocchi. Sono state selezionate le tecniche di mitigazione con il miglior compromesso tra costi e protezione, e proposta una soluzione personalizzata che sfrutta la configurabilità dell’architettura, permettendo l’attivazione dei meccanismi di fault tolerance anche a runtime. Infine, il core è stato validato mediante un ambiente UVM dedicato e testbench specifici. I risultati di frequenza massima, potenza e area sono stati ottenuti tramite sintesi standard-cell e verificati con analisi post-sintesi e un test di iniezione di guasti sviluppato presso l'Università di Pisa.
Nowadays, reconfigurable hardware architectures play a key role in space systems thanks to their adaptability and efficiency. However, in the orbital environment it is essential to preserve information integrity and prevent malfunctions, since the architectures deployed on satellites are exposed to radiation-induced faults that may compromise the entire system. Hardware and software mitigation techniques therefore provide an essential protection layer.
Based on these motivations, this work investigates how radiation-mitigation techniques can be systematically applied by developing a new methodology for analyzing digital architectures and identifying the most suitable solutions to increase their resilience and reliability.
The methodology was applied to a Coarse-Grained Reconfigurable Architecture (CGRA) developed at the University of Pisa. A detailed analysis of the CGRA was carried out, evaluating the criticality, area, and power consumption of its main blocks. Mitigation techniques offering the best trade-off between resource usage and fault protection were identified, and a customized solution was proposed that leverages the configurability of the architecture, enabling fault-tolerance mechanisms to be activated even at runtime.
Finally, the core was validated through a dedicated UVM environment and specific testbenches. Maximum clock frequency, power, and area results were obtained through standard-cell synthesis and further verified via post-synthesis analysis and a fault-injection test developed at the University of Pisa.
Nowadays, reconfigurable hardware architectures play a key role in space systems thanks to their adaptability and efficiency. However, in the orbital environment it is essential to preserve information integrity and prevent malfunctions, since the architectures deployed on satellites are exposed to radiation-induced faults that may compromise the entire system. Hardware and software mitigation techniques therefore provide an essential protection layer.
Based on these motivations, this work investigates how radiation-mitigation techniques can be systematically applied by developing a new methodology for analyzing digital architectures and identifying the most suitable solutions to increase their resilience and reliability.
The methodology was applied to a Coarse-Grained Reconfigurable Architecture (CGRA) developed at the University of Pisa. A detailed analysis of the CGRA was carried out, evaluating the criticality, area, and power consumption of its main blocks. Mitigation techniques offering the best trade-off between resource usage and fault protection were identified, and a customized solution was proposed that leverages the configurability of the architecture, enabling fault-tolerance mechanisms to be activated even at runtime.
Finally, the core was validated through a dedicated UVM environment and specific testbenches. Maximum clock frequency, power, and area results were obtained through standard-cell synthesis and further verified via post-synthesis analysis and a fault-injection test developed at the University of Pisa.
File
| Nome file | Dimensione |
|---|---|
La tesi non è consultabile. |
|