Tesi etd-10252024-124828 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
CAPURSO, ALESSANDRO
URN
etd-10252024-124828
Titolo
Similarity-based policy transfer for Multi-Task Reinforcement Learning
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
relatore Dott. Piccoli Elia
relatore Dott. Piccoli Elia
Parole chiave
- multi-task RL
- policy transfer
- reinforcement learning
Data inizio appello
29/11/2024
Consultabilità
Completa
Riassunto
This thesis proposes a new Multi Task Reinforcement Learning approach to improve the learning of a new task by using previously acquired knowledge (source policies). This method leverage a common latent space for frames and task descriptions, using an Autoencoder and BERT transformer, to capture the similarity between source and target tasks via cosine similarity. The closest source policy is selected to guide the learning process of the target task. The experiments were carried out on two different game environments: Atari and Highway-env.
File
Nome file | Dimensione |
---|---|
Tesi_Mag...purso.pdf | 8.40 Mb |
Contatta l’autore |