Tesi etd-10162024-211455 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
TUPPUTI, DOMENICO
Indirizzo email
d.tupputi@studenti.unipi.it, tupputi.domenico@gmail.com
URN
etd-10162024-211455
Titolo
Dynamic Graph Neural Networks for Financial Forecasting
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
Parole chiave
- dynamic graph neural network
- finance
- forecasting
- gru
- mamba
- stock price
- transformer
Data inizio appello
29/11/2024
Consultabilità
Completa
Riassunto
The thesis proposes a stock price prediction model based on a Dynamic Graph Neural Network (DGNN), which represents stocks and their interactions through daily events, enriched by sequential models (GRU, Transformer, and MAMBA) for predicting the next day's closing price. The dataset includes stock data, macroeconomic data, and news, pre-processed to build a dynamic graph. The experimental results demonstrate the model's effectiveness in capturing market dynamics and predicting prices.
File
Nome file | Dimensione |
---|---|
Tesi_Tup...enico.pdf | 18.95 Mb |
Contatta l’autore |