Tesi etd-09282025-130211 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
MONTINARO, ALDO
URN
etd-09282025-130211
Titolo
RuleCard: Interpretable Rule-Based Scorecard via Additive Trees
Dipartimento
INFORMATICA
Corso di studi
DATA SCIENCE AND BUSINESS INFORMATICS
Relatori
relatore Prof. Guidotti, Riccardo
supervisore Dott. Spinnato, Francesco
supervisore Dott. Spinnato, Francesco
Parole chiave
- additive-models
- machine-learning
- scorecard
- tree-based
- xai
Data inizio appello
17/10/2025
Consultabilità
Completa
Riassunto
This thesis introduces a framework that combines the predictive power of additive ensembles with the interpretability of scorecards. The method builds on small, low-depth trees, each trained on single features or pairs of features, that are iteratively added to the model. The final predictive system is a transparent scorecard, extracted directly from the trained trees, which preserves human interpretability while maintaining competitive classification performance.
File
| Nome file | Dimensione |
|---|---|
| Tesi_Mon..._pdfA.pdf | 6.25 Mb |
Contatta l’autore |
|