logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-09282025-130211


Tipo di tesi
Tesi di laurea magistrale
Autore
MONTINARO, ALDO
URN
etd-09282025-130211
Titolo
RuleCard: Interpretable Rule-Based Scorecard via Additive Trees
Dipartimento
INFORMATICA
Corso di studi
DATA SCIENCE AND BUSINESS INFORMATICS
Relatori
relatore Prof. Guidotti, Riccardo
supervisore Dott. Spinnato, Francesco
Parole chiave
  • additive-models
  • machine-learning
  • scorecard
  • tree-based
  • xai
Data inizio appello
17/10/2025
Consultabilità
Completa
Riassunto
This thesis introduces a framework that combines the predictive power of additive ensembles with the interpretability of scorecards. The method builds on small, low-depth trees, each trained on single features or pairs of features, that are iteratively added to the model. The final predictive system is a transparent scorecard, extracted directly from the trained trees, which preserves human interpretability while maintaining competitive classification performance.
File