Tesi etd-09262024-180227 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
FIGÀ, VALERIA
URN
etd-09262024-180227
Titolo
A NEW MESOTHELIN-BINDING SCAFFOLD AS A POTENTIAL THERANOSTIC STRATEGY AGAINST PLEURAL MESOTHELIOMA
Dipartimento
BIOLOGIA
Corso di studi
BIOLOGIA APPLICATA ALLA BIOMEDICINA
Relatori
relatore Prof.ssa Gemignani, Federica
correlatore Dott. Silvestri, Roberto
correlatore Dott. Silvestri, Roberto
Parole chiave
- mesothelin
- pleural mesothelioma
- scaffold
- target therapy
Data inizio appello
14/10/2024
Consultabilità
Non consultabile
Data di rilascio
14/10/2094
Riassunto
Il raro tumore noto come mesotelioma pleurico (MP) si sviluppa dalle cellule mesoteliali pleuriche ed è legato all'esposizione all'amianto. La resezione chirurgica, la chemioterapia e l'immunoterapia sono forme comuni di trattamento; un approccio multimodale è frequentemente utilizzato per massimizzare l'efficacia. Tuttavia, la prognosi rimane sfavorevole, con una sopravvivenza complessiva di circa 12 mesi. Sono state investigate molte strategie di terapia mirata, principalmente rivolte alla mesotelina (MSLN), una proteina espressa ad elevati livelli sulla membrana delle cellule di MP; tuttavia, la maggior parte degli approcci terapeutici ha prodotto risultati contrastanti. Ad esempio, la terapia mediata da anticorpi ha mostrato un'efficacia ridotta, probabilmente a causa delle grandi dimensioni degli anticorpi (che variano da 40 a 150 kDa) che non consentono una buona internalizzazione nella massa tumorale. Piccole strutture proteiche (circa 12 kDa) derivate dal decimo dominio della fibronectina umana di tipo III (Fn3) sono state recentemente ingegnerizzate per legarsi alla MSLN con alta affinità. Le piccole dimensioni di Fn3 potrebbero aiutare a superare i problemi legati agli anticorpi, rendendo questo scaffold un buon vettore di radionuclidi per la radioterapia mirata. Inoltre, è stata osservata l'internalizzazione dei complessi MSLN-Fn3 negli endosomi precoci, suggerendo che Fn3 potrebbe avere un ottimo potenziale nella somministrazione di farmaci. L'obiettivo di questo lavoro è ingegnerizzare una variante di Fn3 per ottimizzare la coniugazione con un agente chelante, per favorirne l'uso nella radioterapia mirata. Fn3 è stata coniugata con un chelante (DOTA-GA), valutando diversi pH e rapporti molari. Tuttavia, l'analisi di spettrometria di massa ha mostrato che la coniugazione è avvenuta in più siti reattivi di Fn3, indipendentemente dalle condizioni valutate. Poiché più eventi di coniugazione non sono ottimali per la successiva radiomarcatura e potrebbero influenzare l'affinità di Fn3-MSLN, per superare questo problema, abbiamo ingegnerizzato Fn3 per introdurre un unico sito reattivo per la coniugazione con il chelante. La nuova variante di Fn3 è stata espressa in cellule E. coli BL21(DE) e purificata mediante cromatografia per affinità con cobalto e dialisi. La nuova variante è stata quindi coniugata con DOTA-GA e con la spettrometria di massa abbiamo confermato la presenza di un solo sito reattivo e che Fn3 era completamente coniugata. Utilizzando saggi di legame con titolazione tramite citometria a flusso, abbiamo determinato l'affinità di Fn3 coniugata per la MSLN utilizzando una linea cellulare di MP. I saggi di legame per titolazione sono stati eseguiti con concentrazioni crescenti di Fn3. L'affinità è stata misurata tramite KD. Sulla base del valore KD, abbiamo osservato un'elevata affinità di questa nuova variante di Fn3 per la MSLN. In futuri esperimenti, questa nuova variante verrà valutata per la coniugazione con un radionuclide.
The rare tumor known as pleural mesothelioma (PM) develops from the pleural mesothelial cells and is linked to asbestos exposure. Surgical resection, chemotherapy and immunotherapy are common forms of treatment; a multimodal approach is frequently used for maximum efficacy. However, the prognosis remains poor, with an overall survival of about 12 months. Many target therapy strategies, mostly aimed at mesothelin (MSLN), a cell-surface protein strongly expressed in PM, have been investigated; nevertheless, most of them have produced conflicting outcomes. For instance, antibody-mediated therapy showed reduced efficacy, probably due to the large size of antibodies (ranging from 40 to 150 kDa) that does not allow for a good internalization into the tumor mass. Small-protein scaffolds (about 12 kDa) derived from the tenth domain of human fibronectin type III (Fn3) have been recently engineered to bind MSLN with high affinity. The small size of Fn3 might help overcome the antibodies-related issues, making this scaffold a good carrier of radionuclides for targeted radiotherapy. Moreover, an internalization and colocalization of MSLN-Fn3 complexes through early endosomes have been observed, suggesting the potential of Fn3 in drug delivery. The aim of this work is to engineer an Fn3 variant to allow its optimal conjugation with a chelating agent, which will prompt its usage as a radionuclide's carrier for targeted radiotherapy. A MSLN-binding Fn3 variant was first conjugated with a chelator (DOTA-GA), evaluating different pHs and molar ratios. However, mass spectrometry analysis showed that conjugation happened at multiple Fn3 reactive sites, regardless of the condition evaluated. Since multiple conjugation events are sub-optimal for the following radiolabeling and may hamper the Fn3-MSLN affinity, to overcome this issue, we further engineered Fn3 to introduce a single reactive site for the conjugation with DOTA-GA. The new protein variant was expressed in E. coli BL21(DE) cells and purified with cobalt affinity chromatography and dialysis. The new variant was then bioconjugated with DOTA-GA and with mass spectrometry we confirmed the presence of just one reactive site and that Fn3 was fully conjugated. Using flow cytometry titration binding assays, we determined the conjugated Fn3 affinity for MSLN using PM cell line. The titration binding assays were done with different increasing Fn3 concentrations. The affinity was measured by estimating the dissociation constant at the equilibrium (KD). Based on KD value, we discovered a high affinity of this new Fn3 variant for MSLN. We now can evaluate whether this new variant can be used as a radiocarrier for a possible therapeutic strategy against PM.
The rare tumor known as pleural mesothelioma (PM) develops from the pleural mesothelial cells and is linked to asbestos exposure. Surgical resection, chemotherapy and immunotherapy are common forms of treatment; a multimodal approach is frequently used for maximum efficacy. However, the prognosis remains poor, with an overall survival of about 12 months. Many target therapy strategies, mostly aimed at mesothelin (MSLN), a cell-surface protein strongly expressed in PM, have been investigated; nevertheless, most of them have produced conflicting outcomes. For instance, antibody-mediated therapy showed reduced efficacy, probably due to the large size of antibodies (ranging from 40 to 150 kDa) that does not allow for a good internalization into the tumor mass. Small-protein scaffolds (about 12 kDa) derived from the tenth domain of human fibronectin type III (Fn3) have been recently engineered to bind MSLN with high affinity. The small size of Fn3 might help overcome the antibodies-related issues, making this scaffold a good carrier of radionuclides for targeted radiotherapy. Moreover, an internalization and colocalization of MSLN-Fn3 complexes through early endosomes have been observed, suggesting the potential of Fn3 in drug delivery. The aim of this work is to engineer an Fn3 variant to allow its optimal conjugation with a chelating agent, which will prompt its usage as a radionuclide's carrier for targeted radiotherapy. A MSLN-binding Fn3 variant was first conjugated with a chelator (DOTA-GA), evaluating different pHs and molar ratios. However, mass spectrometry analysis showed that conjugation happened at multiple Fn3 reactive sites, regardless of the condition evaluated. Since multiple conjugation events are sub-optimal for the following radiolabeling and may hamper the Fn3-MSLN affinity, to overcome this issue, we further engineered Fn3 to introduce a single reactive site for the conjugation with DOTA-GA. The new protein variant was expressed in E. coli BL21(DE) cells and purified with cobalt affinity chromatography and dialysis. The new variant was then bioconjugated with DOTA-GA and with mass spectrometry we confirmed the presence of just one reactive site and that Fn3 was fully conjugated. Using flow cytometry titration binding assays, we determined the conjugated Fn3 affinity for MSLN using PM cell line. The titration binding assays were done with different increasing Fn3 concentrations. The affinity was measured by estimating the dissociation constant at the equilibrium (KD). Based on KD value, we discovered a high affinity of this new Fn3 variant for MSLN. We now can evaluate whether this new variant can be used as a radiocarrier for a possible therapeutic strategy against PM.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |