logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-09132025-131500


Tipo di tesi
Tesi di laurea magistrale
Autore
DI GIACOMO, LUCA
URN
etd-09132025-131500
Titolo
Model Weight Learning as a novel paradigm in Computer Vision
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
ARTIFICIAL INTELLIGENCE AND DATA ENGINEERING
Relatori
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
supervisore Dott. Parola, Marco
Parole chiave
  • computer vision
  • image-free
  • machine unlearning
  • unified framework
  • weight learning
  • zero-shot learning
Data inizio appello
02/10/2025
Consultabilità
Non consultabile
Data di rilascio
02/10/2028
Riassunto
This thesis investigates model weight learning as a data modality to support different downstream tasks in the computer vision context. By treating
model weights as data, we explore their potential to adapt knowledge for
specific tasks. We first apply this perspective to the zero-shot learning problem, showing how model weights can be used to produce new weights for
an image classifier, enabling the classification of new/unseen classes. Next,
we explore the problem of machine unlearning, where weight-based strategies allow for efficient and targeted forgetting of specific classes without
retraining from scratch. Finally, we draw a future direction for a general
framework to jointly address both zero-shot learning and unlearning.
File