logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-09122024-152715


Tipo di tesi
Tesi di laurea magistrale
Autore
MARINO, MARTINA
URN
etd-09122024-152715
Titolo
Convolutional Deep Learning for multimodal classification of abnormal electrical brain activity
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
ARTIFICIAL INTELLIGENCE AND DATA ENGINEERING
Relatori
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
correlatore Dott. Parola, Marco
Parole chiave
  • brain activity
  • brain seizures
  • cnn
  • deep learning
  • eeg
  • electroencephalograms
  • elettroencefalogrammi
  • epilepsy
  • epilessia
  • patologie cerebrali
Data inizio appello
07/10/2024
Consultabilità
Non consultabile
Data di rilascio
07/10/2027
Riassunto
Using medical image data, this thesis will focus on the adoption of deep learning models for harmful brain activity classification. In particular, a detection and classification of anomalies related to electroencephalograms (EEGs) will be performed. Convolutional neural networks (CNNs) will be trained and fine-tuned on a dataset provided by a medical centre, with the aim of improving the identification of pathological brain patterns and contributing to faster and more accurate diagnoses.
File