Tesi etd-09092024-110620 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
GATTI, GIORGIO
URN
etd-09092024-110620
Titolo
The Riemannian Penrose Inequality
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Dott.ssa Pluda, Alessandra
controrelatore Dott. Benatti, Luca
controrelatore Dott. Benatti, Luca
Parole chiave
- general relativity
- geometric flows
- p-harmonic functions
Data inizio appello
27/09/2024
Consultabilità
Completa
Riassunto
In this thesis, we aim to prove the Riemannian Penrose Inequality for asymptotically flat Riemannian manifolds with connected outermost minimal surface.
To do so, we consider the geometric flow given by the level sets of a solution to a variant of the p-laplacian equation, then establish the monotonicity of a quasi-local mass function along the flow and use it to obtain the inequality.
A similar strategy was first used in the article of Agostiniani, Mantegazza, Mazzieri, Oronzio on the RPI, which we aim to simplify through a more intuitive monotonicity formula.
To do so, we consider the geometric flow given by the level sets of a solution to a variant of the p-laplacian equation, then establish the monotonicity of a quasi-local mass function along the flow and use it to obtain the inequality.
A similar strategy was first used in the article of Agostiniani, Mantegazza, Mazzieri, Oronzio on the RPI, which we aim to simplify through a more intuitive monotonicity formula.
File
Nome file | Dimensione |
---|---|
Tesi_Magistrale.pdf | 698.45 Kb |
Contatta l’autore |