| Tesi etd-09082025-084342 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di laurea magistrale
  
    Autore
  
  
    GIUNTINI, STEFANO  
  
    URN
  
  
    etd-09082025-084342
  
    Titolo
  
  
    Entropy Generation and Loss Breakdown of the SPLEEN TS22 Turbine Stage
  
    Dipartimento
  
  
    INGEGNERIA CIVILE E INDUSTRIALE
  
    Corso di studi
  
  
    INGEGNERIA AEROSPAZIALE
  
    Relatori
  
  
    relatore Prof. Pasini, Angelo
supervisore Prof. Lavagnoli, Sergio
tutor Ing. Da Valle, Lorenzo
  
supervisore Prof. Lavagnoli, Sergio
tutor Ing. Da Valle, Lorenzo
    Parole chiave
  
  - exergia (exergy)
- flusso di cavità (cavity flow)
- generazione di entropia (entropy generation)
- suddivisione delle perdite (loss breakdown)
- turbine assiali (axial turbines)
    Data inizio appello
  
  
    03/10/2025
  
    Consultabilità
  
  
    Tesi non consultabile
  
    Riassunto
  
  I flussi secondari nelle turbomacchine giocano un ruolo fondamentale nel miglioramento dell’efficienza nei sistemi di generazione di potenza, nella trasmissione meccanica e nelle tecnologie aeronautiche. Questi flussi dipendono principalmente dalla geometria e dalle condizioni operative della turbina, e influenzano in modo significativo la conversione energetica e l’efficienza globale. Sebbene i progressi in parametri come il rapporto di pressione, la gestione termica e l’aerodinamica nel canale principale delle turbine a gas abbiano portato a miglioramenti prestazionali, il rendimento decrescente in queste aree ha focalizzato l’attenzione verso lo studio dei flussi secondari, in particolare nelle zone critiche di miscelazione e raffreddamento della turbina. Nelle configurazioni prive di flusso di raffreddamento, le perdite aerodinamiche sono principalmente causate da strutture di flusso secondario come i vortici di passaggio, a ferro di cavallo e ad angolo. Questi fenomeni interagiscono con il flusso principale all’interno del canale, tra le palette e nella cavità di estremità, dove i flussi di aggiramento condizionano ulteriormente il dominio. Dunque, la miscelazione e la distorsione che ne deriva riduce significativamente le prestazioni e contribuisce al bilancio complessivo delle perdite. La presente tesi analizza i meccanismi di perdita all’interno del canale principale e nella cavità tra la parete esterna e le estremità delle palette. Le simulazioni numeriche sono state condotte utilizzando un solver (elsA) per le Reynolds-Averaged Navier-Stokes (RANS), su diverse configurazioni, a partire da un caso anulare adiabatico monostadio. Successivamente, sono stati analizzati casi con condizioni al contorno con slittamento per isolare gli effetti sulla parete, in seguito è stato valutato l’impatto di muri isotermi sull’efficienza. Infine, l’ultima configurazione studiata riguarda uno stadio con rotore carenato. Per approfondire la comprensione di questi meccanismi di perdita, sono stati impiegati diversi strumenti analitici, tra cui un approccio exergetico per valutare la generazione di entropia dovuta agli effetti viscosi. L’analisi ha permesso di classificare le diverse tipologie di perdita, identificando quattro meccanismi principali nei casi di base senza flusso di raffreddamento: perdite di profilo, dovute a effetti bidimensionali lontani dai flussi secondari, quelle di parete, causate dall’evoluzione dello strato limite nelle palette, perdite di aggiramento, nella cavità dovute all’ingresso del flusso nella carenatura, e perdite legate alla dinamica dei flussi secondari. Inoltre, lo studio ha evidenziato quali gradienti, riferiti in un sistema di coordinate basato su linee di flusso, contribuiscono maggiormente alla generazione di entropia, facendo emergere il legame tra questi meccanismi di perdita e l’evoluzione dei flussi secondari nello stadio.
Secondary flows in turbomachinery play a pivotal role in enhancing the efficiency of power generation, mechanical drive systems, and aviation technologies. These flows result primarily from the geometry and operating conditions within the turbine and significantly influence energy conversion and overall efficiency. While advancements in the main annulus of gas turbines have led to performance improvements in parameters, such as pressure ratios, temperature management and aerodynamics, the diminishing efficiency in these areas have shifted the focus towards understanding secondary flows, particularly in the critical mixing and cooling regions of the turbine. In turbine configurations without purge flow, aerodynamic losses are caused by secondary flow structures such as passage vortices, horseshoe and corner ones. These flow features interact with the main stream, inside the blade passage and within the tip cavity, where leakage flows further disturb the flow field. The resulting mixing and distortion reduces the performance and contributes to the overall loss distribution. This thesis explores the mechanisms of loss within the main annulus and the shroud cavity, situated between the casing endwall and the blade tips. Numerical simulations are carried out using a Reynolds-Averaged Navier-Stokes (RANS) solver (elsA) across various configurations, starting with an annular adiabatic one-stage baseline. Subsequently, different cases are analyzed, including slip wall condition rows to isolate endwall effects, then it has been evaluated the impact of isothermal walls on efficiency. To conclude, the final configuration investigated is a turbine stage featuring a shrouded rotor. In order to deepen the understanding of these loss mechanisms, several analytical tools were included, such as an exergy approach, to assess entropy generation due to viscous effects. This analysis wants to acknowledge the different types of losses and to classify the four primary mechanisms related to the baseline studies without purge air: profile, endwall, cavity and secondary losses. The first one is related to two-dimensional effects, occurring away from secondary flows; the second one detects boundary layer evolution in the rows; while the third results from flow entering the shroud inlet. The remaining losses come from secondary flows dynamics. Furthermore, the study highlights which gradients, in a streamline-cross flow-radial coordinate system, contribute to higher entropy generation, therefore elucidating the relationship between these losses and the evolution of secondary flows within the turbine stage.
Secondary flows in turbomachinery play a pivotal role in enhancing the efficiency of power generation, mechanical drive systems, and aviation technologies. These flows result primarily from the geometry and operating conditions within the turbine and significantly influence energy conversion and overall efficiency. While advancements in the main annulus of gas turbines have led to performance improvements in parameters, such as pressure ratios, temperature management and aerodynamics, the diminishing efficiency in these areas have shifted the focus towards understanding secondary flows, particularly in the critical mixing and cooling regions of the turbine. In turbine configurations without purge flow, aerodynamic losses are caused by secondary flow structures such as passage vortices, horseshoe and corner ones. These flow features interact with the main stream, inside the blade passage and within the tip cavity, where leakage flows further disturb the flow field. The resulting mixing and distortion reduces the performance and contributes to the overall loss distribution. This thesis explores the mechanisms of loss within the main annulus and the shroud cavity, situated between the casing endwall and the blade tips. Numerical simulations are carried out using a Reynolds-Averaged Navier-Stokes (RANS) solver (elsA) across various configurations, starting with an annular adiabatic one-stage baseline. Subsequently, different cases are analyzed, including slip wall condition rows to isolate endwall effects, then it has been evaluated the impact of isothermal walls on efficiency. To conclude, the final configuration investigated is a turbine stage featuring a shrouded rotor. In order to deepen the understanding of these loss mechanisms, several analytical tools were included, such as an exergy approach, to assess entropy generation due to viscous effects. This analysis wants to acknowledge the different types of losses and to classify the four primary mechanisms related to the baseline studies without purge air: profile, endwall, cavity and secondary losses. The first one is related to two-dimensional effects, occurring away from secondary flows; the second one detects boundary layer evolution in the rows; while the third results from flow entering the shroud inlet. The remaining losses come from secondary flows dynamics. Furthermore, the study highlights which gradients, in a streamline-cross flow-radial coordinate system, contribute to higher entropy generation, therefore elucidating the relationship between these losses and the evolution of secondary flows within the turbine stage.
    File
  
  | Nome file | Dimensione | 
|---|---|
| Tesi non consultabile. | |
 
		