| Tesi etd-09012025-213127 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di laurea magistrale
  
    Autore
  
  
    RAFFI, JACOPO  
  
    URN
  
  
    etd-09012025-213127
  
    Titolo
  
  
    Distributed Deep Learning: An Experimental Evaluation of Parallelization Strategies
  
    Dipartimento
  
  
    INFORMATICA
  
    Corso di studi
  
  
    INFORMATICA
  
    Relatori
  
  
    relatore Prof. Dazzi, Patrizio
relatore Prof. Danelutto, Marco
  
relatore Prof. Danelutto, Marco
    Parole chiave
  
  - Distributed Deep Learning
    Data inizio appello
  
  
    17/10/2025
  
    Consultabilità
  
  
    Completa
  
    Riassunto
  
  This thesis aims to study distributed deep learning by focusing on Vision Transformers, with the goal of understanding how different parallelization strategies affect the training of large-scale models. It investigates the impact of system parameters such as batch size, model size, and interconnects, using experimental evaluation to assess scalability, speedup, and efficiency.
    File
  
  | Nome file | Dimensione | 
|---|---|
| Tesi_Raffi.pdf | 6.67 Mb | 
| Contatta l’autore | |
 
		