logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-08312025-182723


Tipo di tesi
Tesi di laurea magistrale
Autore
MAURO, LORENZO
URN
etd-08312025-182723
Titolo
Conformal Field Theory at Finite Temperature
Dipartimento
FISICA
Corso di studi
FISICA
Relatori
relatore Vichi, Alessandro
Parole chiave
  • CFT
  • conformal
  • finite temperature
  • high temperature
  • O(N)
  • twisted partition function
Data inizio appello
22/09/2025
Consultabilità
Completa
Riassunto
The present thesis will discuss Conformal Field Theories at Finite Temperature.
We will begin by reviewing the basics of conformal geometry, with particular emphasis on studying the conformal algebra of $\mathbb{R}^{p,q}$. We then proceed to review simple aspects of conformal field theories in $\mathbb{R}^{p,q}$, such as $n$-point functions, OPE, and unitarity bounds. After that, we dive into a discussion of various topics about Conformal Field Theories at finite temperature, such as group-theoretical methods and asymptotic expressions for the twisted partition function at high temperature. Finally, we proceed to perform an explicit computation of a twisted partition function for the $O(N)$ $\phi^4$ model on $S^2$, to compare our result to the asymptotic results dictated by the general theory.
File