logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-08312024-171640


Tipo di tesi
Tesi di laurea magistrale
Autore
TARINI, BERNARDO
URN
etd-08312024-171640
Titolo
Equivariant Intersection Theory
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Vistoli, Angelo
Parole chiave
  • classifying spaces
  • coomologia equivariante
  • equivariant Chow groups
  • equivariant cohomology
  • fibrati vettoriali quadrici
  • gruppi di Chow equivarianti
  • gruppi riduttivi speciali
  • intersection theory
  • quadric bundles
  • spazi classificanti
  • special reductive groups
  • teoria dell'intersezione
Data inizio appello
27/09/2024
Consultabilità
Non consultabile
Data di rilascio
27/09/2064
Riassunto
In this thesis we are going to introduce the fundamental properties of equivariant Chow groups of varieties with a $G$-action, where $G$ is a linear algebraic group over any base field. This definition was firstly given by Totaro for classifying spaces and then extended to $G$-varieties by Edidin and Graham. We will make some computations (all known in the literature) of Chow rings of classifying spaces of some classical groups, starting with some relatively simple cases like the general linear group $\GL_n$, till some more involved ones as the special orthogonal group $\SO_n$ with $n$ even. This last computation will be a good excuse to develop some theory about Chow groups of oriented quadric bundles.
We will then expose a general theorem, due to Edidin and Graham, which allows to identify the Chow ring of a special reductive group $G$ over an algebraically closed field with the subalgebra of $W$-invariant elements in the Chow ring of a maximal torus $T$ where $W=N(T)/T$ is the Weyl group. This theorem sinks its roots in a previous result by Vistoli that defined a ring homomorphism $\CH^*(\mathrm{BT})^W\rightarrow \CH^*(\mathrm{BG})$ working with rational coefficients.
File