Tesi etd-08212024-185145 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
CALCINARO, DANILO
URN
etd-08212024-185145
Titolo
Minimal Lagrangian diffeomorphism via Anti-de Sitter geometry
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Tamburelli, Andrea
Parole chiave
- Anti-de Sitter geometry
Data inizio appello
27/09/2024
Consultabilità
Non consultabile
Data di rilascio
27/09/2064
Riassunto
Minimal Lagrangian maps have played an important role in the study of hyperbolic structures on surfaces. As observed independently by Labourie and Schoen, given a closed hyperbolic surfaces and two metrics on it, there exists a unique minimal Lagrangian diffeomorphism isotopic to the identity.
Alternative proofs have been provided later, and in my thesis I concentrate on the proof in the context of Anti-de Sitter three dimensional geometry.
Alternative proofs have been provided later, and in my thesis I concentrate on the proof in the context of Anti-de Sitter three dimensional geometry.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |