logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-07232025-120343


Tipo di tesi
Tesi di dottorato di ricerca
Autore
BIANCHI, FILIPPO
URN
etd-07232025-120343
Titolo
Signature of spin 4-manifolds and spin mapping class groups
Settore scientifico disciplinare
MAT/03 - GEOMETRIA
Corso di studi
MATEMATICA
Relatori
tutor Prof. Lisca, Paolo
Parole chiave
  • 4-manifolds
  • Lefschetz fibrations
  • Rokhlin's theorem
  • spin mapping class group
  • spin structures
Data inizio appello
28/07/2025
Consultabilità
Completa
Riassunto
Lisca and Parma showed that every smooth 4-manifold admits a peculiar kind of handle decomposition, which they call horizontal. As a consequence, it is possible to prove that every smooth closed 4-manifold is the union of an achiral Lefschetz fibration over $D^2$ and a handlebody bundle over $S^1$, glued along their boundaries. I use this splitting to study spin 4-manifolds, obtaining a new proof of Rokhlin’s theorem on the signature. The key technical step involves finding a presentation of the even spin mapping class group of a closed orientable surface, using the method of Hatcher-Thurston and Wajnryb. In order to compute the signature, I use results of Endo-Nagami and Kuno-Sato on Meyer’s cocycle.
File