logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-07102024-113955


Tipo di tesi
Tesi di laurea magistrale
Autore
MOGHANI, FARZANEH
URN
etd-07102024-113955
Titolo
Development of a power consumption clustering in the manufacturing sector based on data mining techniques
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
COMPUTER ENGINEERING
Relatori
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
relatore Prof. Alfeo, Antonio Luca
relatore Dott. Baldi, Giacomo
Parole chiave
  • clustering algorithms
  • data mining techniques
  • internet of things (IoT)
  • LSTM
  • smart devices
  • unsupervised learning
Data inizio appello
26/07/2024
Consultabilità
Non consultabile
Data di rilascio
26/07/2094
Riassunto
This thesis focuses on improving energy management in Internet of Things (IoT) devices by accurately identifying device states to enhance energy conservation and extend battery life. Three frameworks are explored: an unsupervised learning approach using clustering algorithms, an advanced feature extraction method combining Convolutional 1D (Conv1D) and Long Short-Term Memory (LSTM) networks followed by DBSCAN clustering, and a proposed supervised learning approach for future studies. The advanced methods demonstrate significant improvements in clustering quality and state prediction accuracy, contributing to more efficient and sustainable IoT device operations.
File