Tesi etd-07012025-160948 |
Link copiato negli appunti
Tipo di tesi
Tesi di dottorato di ricerca
Autore
RASTRELLI, MARIO
URN
etd-07012025-160948
Titolo
Domains and Sobolev Spaces associated with Schrödinger Operators with Highly Singular Potentials
Settore scientifico disciplinare
MAT/05 - ANALISI MATEMATICA
Corso di studi
MATEMATICA
Relatori
tutor Prof. Gueorguiev, Vladimir Simeonov
correlatore Prof. Ozawa, Tohru
correlatore Prof. Ozawa, Tohru
Parole chiave
- point interaction
- Scrödinger operators
- self-adjoint
- singular potentials
Data inizio appello
04/07/2025
Consultabilità
Completa
Riassunto
This thesis investigates Schrödinger operators with high singular potentials, such as the inverse square and delta potentials. It focuses on the characterization of operator domains and the development of perturbed Sobolev spaces suited for singular interactions. New results include the explicit description of the domain of the squared inverse-square Schrödinger operator and an alternative construction of the delta interaction operator via Helmholtz resolvent limits. Additionally, the thesis extends Strichartz estimates to novel fractional perturbed Sobolev spaces in the L^p case, allowing the study of well-posedness for nonlinear Schrödinger equations with point interactions in dimensions two and three with contraction method.
File
Nome file | Dimensione |
---|---|
PhD_Thes...i_1_1.pdf | 868.22 Kb |
Contatta l’autore |