Tesi etd-07012025-113527 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
DI FALCO, SALVATORE
URN
etd-07012025-113527
Titolo
From Human Intuition to Autonomous Action: An End-to-End Experimental Validation of Imitation Learning for Quadrupedal Navigation
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA ROBOTICA E DELL'AUTOMAZIONE
Relatori
relatore Prof. Garabini, Manolo
correlatore Angelini, Franco
tutor Tolomei, Simone
correlatore Angelini, Franco
tutor Tolomei, Simone
Parole chiave
- Anymal
- Autonomous Navigation
- Behavioral Cloning
- Decision Transformer (DT)
- Experimental Validation
- Feed-Forward Network
- Hardware Constraints
- Imitation Learning
- Long Short-Term Memory (LSTM)
- Multimodal Perception
- Navigation Dataset
- Quadrupedal Robotics
- Teleoperation
Data inizio appello
18/07/2025
Consultabilità
Non consultabile
Data di rilascio
18/07/2095
Riassunto
This thesis addresses the autonomous navigation of a quadruped robot through Imitation Learning, with the goal of translating human intuition into autonomous action. The end-to-end approach was validated by comparing three different neural network architectures. The methodology was based on the creation of a large-scale dataset, collected from 36 users via an immersive teleoperation interface that combines camera and LiDAR data. Following a preprocessing pipeline, this data was used to train, via Behavioral Cloning, a reactive network (FFN) and two memory-based architectures (LSTM, Decision Transformer), using a perception front-end with pre-trained models and a custom CNN for feature compression. The methodology was experimentally validated on the quadrupedal robot ANYmal, showing that memory-based models overcome the limitations of reactive ones, and posing the groundwork for autonomous end-to-end navigation.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |