logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-06262024-222000


Tipo di tesi
Tesi di laurea magistrale
Autore
PACCHINI, STEFANO
URN
etd-06262024-222000
Titolo
Continual Learning For Industry 4.0 - Enhancing Automation With Sustainable Deep Learning
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
correlatore Prof. Lomonaco, Vincenzo
Parole chiave
  • automation
  • continual
  • industry
  • learning
  • sustainable
Data inizio appello
12/07/2024
Consultabilità
Completa
Riassunto
The objective of this thesis is to evaluate the effectiveness of Continual Learning, in conjunction with Knowledge Distillation, in industrial-like environments. Given that these are key techniques for an effective Industry 4.0 transition, we propose a blueprint for integrating these sustainable Deep Learning approaches within manufacturing processes. Finally, we assess the performance of some models trained according to this new protocol, on data streams that are qualitatively consistent with those obtainable from a real production line.
File