logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-06262024-124845


Tipo di tesi
Tesi di laurea magistrale
Autore
BOENING, DAVID
URN
etd-06262024-124845
Titolo
eBWT String Kernels in the Context of Bioinformatics
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Micheli, Alessio
relatore Prof.ssa Rosone, Giovanna
Parole chiave
  • bioinformatics
  • Burrows-Wheeler transform
  • BWT
  • eBWT
  • kernel
  • machine learning
  • ML
  • support vector machines
  • SVM
Data inizio appello
12/07/2024
Consultabilità
Non consultabile
Data di rilascio
12/07/2027
Riassunto
This study aims to develop and evaluate novel string kernels based on the extended
Burrows-Wheeler transform (eBWT). We evaluated the performance of these methods
using support vector machines (SVM) machine learning models trained on multiple
biological datasets compared against other well-established kernels. Results show that
eBWT kernels perform especially well on long sequences.
File