Tesi etd-06072021-081418 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
BOTTI, ADRIANO
URN
etd-06072021-081418
Titolo
Addressing high-dimensional biclustering of cancer omics data: indications from computational experimentations
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
COMPUTER ENGINEERING
Relatori
relatore Prof. Bechini, Alessio
correlatore Prof. Marcelloni, Francesco
correlatore Dott.ssa D'Aurizio, Romina
supervisore Dott. Renda, Alessandro
correlatore Prof. Marcelloni, Francesco
correlatore Dott.ssa D'Aurizio, Romina
supervisore Dott. Renda, Alessandro
Parole chiave
- biclustering
- bioinformatics
- cancer data analysis
- high-dimensional data clustering
- omics data analysis
Data inizio appello
21/06/2021
Consultabilità
Completa
Riassunto
Recent advancements in methodologies for extracting omics data opened up new perspectives in the study of different types of oncologic diseases. The exploitation of massive cancer omics data requires proper data mining tools and algorithms, able to address all the challenges posed by their high dimensionality and the presence of high noise levels. The computational experiments carried out in this thesis work focus on the use of biclustering techniques, and aim to propose a possible workflow for a proper use of biclustering over high-dimensional omics data.
File
Nome file | Dimensione |
---|---|
TesiBotti.pdf | 1.04 Mb |
Contatta l’autore |