Tesi etd-06052025-125442 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PORCARI, PAOLO
URN
etd-06052025-125442
Titolo
Gestione strategica delle scorte di GNL: gli effetti degli scenari instabili
Dipartimento
ECONOMIA E MANAGEMENT
Corso di studi
STRATEGIA, MANAGEMENT E CONTROLLO
Relatori
relatore Prof. Giannini, Marco
Parole chiave
- energia
- energy logistics
- geopolitical risk
- gestione delle scorte
- GNL
- inventory management
- logistica energetica
- rischio geopolitico
Data inizio appello
14/07/2025
Consultabilità
Tesi non consultabile
Riassunto
Il presente elaborato analizza la gestione delle scorte di Gas Naturale Liquefatto (GNL) in una filiera energetica divenuta sempre più sensibile a tensioni geopolitiche, climatiche e regolatorie. Dopo aver riesaminato i modelli classici di inventory management (EOQ, Q- e P-system) nonché i costi associati alle quattro principali tipologie di stock (di ciclo, di sicurezza, speculativi, in transito), si introduce il fattore di rischio composito Rc, che sintetizza in un unico indicatore variabili politiche, logistiche e infrastrutturali e ne consente l’integrazione dinamica nei modelli di scorta. L’applicazione di Rc ai casi studio di Qatar, Stati Uniti e Algeria dimostra che l’inclusione esplicita della componente geopolitica e sistemica permette di modulare in tempo reale il livello di scorta ottimale, attenuare la probabilità di stock-out e migliorare il compromesso costo-sicurezza degli approvvigionamenti. L’elaborato illustra, altresì, come un’architettura Control Tower–Digital Twin, potenziata da algoritmi di machine learning e da geofencing AIS, incrementi l’accuratezza delle previsioni di lead time e la tempestività delle decisioni operative. Parallelamente, una configurazione intermodale che integra FSRU, depositi costieri e corridoi ferroviari LNG-ready amplia la gamma di soluzioni logistiche, accrescendo flessibilità e sostenibilità ambientale. In sinergia, modellistica di rischio, trasformazione digitale e infrastrutture intermodali convergono in un quadro strategico idoneo a rafforzare la resilienza dell’approvvigionamento nazionale di GNL e a costituire una piattaforma adattabile alle future evoluzioni del mercato energetico globale.
This paper examines the inventory management of Liquefied Natural Gas (LNG) within an energy supply chain increasingly vulnerable to geopolitical, climatic, and regulatory pressures. After revisiting classical inventory models (EOQ, Q‐system, P‐system) and the costs associated with the four principal stock categories (cycle, safety, speculative, and in‐transit), we introduce the composite risk factor Rc, a single metric encapsulating political, logistical, and infrastructural variables, and demonstrate how it can be dynamically integrated into stock‐level models. Applying Rc to case studies in Qatar, the United States, and Algeria shows that explicitly accounting for geopolitical and systemic risk enables real‐time adjustment of optimal inventory levels, reduces stock‐out probability, and enhances the cost–security trade-off of supply. The paper also illustrates how a Control Tower–Digital Twin architecture, augmented by machine-learning algorithms and AIS geofencing, improves lead-time forecasting accuracy and accelerates operational decision-making. Concurrently, an intermodal configuration—combining FSRUs, coastal storage terminals, and LNG-ready rail corridors—expands the logistical toolbox, bolstering both flexibility and environmental sustainability. In concert, risk modeling, digital transformation, and intermodal infrastructure coalesce into a strategic framework capable of reinforcing national LNG supply resilience and providing an adaptable platform for future developments in the global energy market.
This paper examines the inventory management of Liquefied Natural Gas (LNG) within an energy supply chain increasingly vulnerable to geopolitical, climatic, and regulatory pressures. After revisiting classical inventory models (EOQ, Q‐system, P‐system) and the costs associated with the four principal stock categories (cycle, safety, speculative, and in‐transit), we introduce the composite risk factor Rc, a single metric encapsulating political, logistical, and infrastructural variables, and demonstrate how it can be dynamically integrated into stock‐level models. Applying Rc to case studies in Qatar, the United States, and Algeria shows that explicitly accounting for geopolitical and systemic risk enables real‐time adjustment of optimal inventory levels, reduces stock‐out probability, and enhances the cost–security trade-off of supply. The paper also illustrates how a Control Tower–Digital Twin architecture, augmented by machine-learning algorithms and AIS geofencing, improves lead-time forecasting accuracy and accelerates operational decision-making. Concurrently, an intermodal configuration—combining FSRUs, coastal storage terminals, and LNG-ready rail corridors—expands the logistical toolbox, bolstering both flexibility and environmental sustainability. In concert, risk modeling, digital transformation, and intermodal infrastructure coalesce into a strategic framework capable of reinforcing national LNG supply resilience and providing an adaptable platform for future developments in the global energy market.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |