Tesi etd-05312021-160036 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale LM6
Autore
COLLI, MATTEO
URN
etd-05312021-160036
Titolo
Analysis of The Cancer Genome Atlas database to identify a gene-dialogue signature predictive of response to immunotherapy in Non-Small Cell Lung Cancer
Dipartimento
RICERCA TRASLAZIONALE E DELLE NUOVE TECNOLOGIE IN MEDICINA E CHIRURGIA
Corso di studi
MEDICINA E CHIRURGIA
Relatori
relatore Prof. Danesi, Romano
correlatore Dott.ssa Del Re, Marzia
correlatore Dott.ssa Del Re, Marzia
Parole chiave
- artificial intelligence
- gene signature
- immunotherapy
- non small cell lung cancer
- predictive biomarkers
Data inizio appello
15/06/2021
Consultabilità
Non consultabile
Data di rilascio
15/06/2091
Riassunto
We propose a retrospective case-control study on genetic and clinical data of NSCLC patients belonging to the TCGA project, freely available on Cbioportal. Patients in the case group were treated with immunotherapy (first, second, or subsequent line of therapy), while those in the control one undertook chemotherapy. For each patient, tumor’s genomic profile was sequenced before therapy. We developed an innovative approach to find significant mutated genes to the respective network of somatic co-mutation. Therefore, we wrote an Artificial Intelligence methodology in the Python programming language for analysis interpretation and gene clustering. We compared the results between cases and controls. Results showed a predictive role of the gene signature in the immunotherapy group and a strong association between TMB score and gene signature.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |