Tesi etd-05142025-105928 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
GRAMAGLIA, GERLANDO
URN
etd-05142025-105928
Titolo
A Spatio-Temporal Neural Network for Bus Travel Time Forecasting
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
correlatore Prof. Torres Marques-Neto, Humberto
controrelatore Prof. Micheli, Alessio
correlatore Prof. Torres Marques-Neto, Humberto
controrelatore Prof. Micheli, Alessio
Parole chiave
- gnn
- ptn
- rnn
Data inizio appello
30/05/2025
Consultabilità
Completa
Riassunto
Bus travel time forecasting is a critical challenge in analysing and optimizing Public Transportation Networks. In this thesis, we propose a Spatio-Temporal Neural Network that captures both spatial and temporal dependencies by combining Graph Neural Networks (GNNs) with Recurrent Neural Networks (RNNs). The model is applied to a large and heterogeneous set of real-world bus routes from Belo Horizonte, Brazil, obtained from the integration of scheduled and real-time GTFS data. The proposed model significantly outperforms standard baselines, especially in detecting irregular and less frequent temporal patterns.
File
Nome file | Dimensione |
---|---|
MSc_thes...lando.pdf | 8.54 Mb |
Contatta l’autore |