logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-03272025-154552


Tipo di tesi
Tesi di laurea magistrale
Autore
VERONA, LEONARDO
URN
etd-03272025-154552
Titolo
Computationally-Based Surrogate Models for the Rapid Prediction of Residual Compressive Strength in Impact-Damaged Composite Laminates
Dipartimento
INGEGNERIA CIVILE E INDUSTRIALE
Corso di studi
INGEGNERIA AEROSPAZIALE
Relatori
relatore Prof. Fanteria, Daniele
correlatore Prof.ssa Furtado Pereira da Silva, Carolina
tutor Danzi, Federico
Parole chiave
  • composite laminates
  • compression after impact
  • high-fidelity simulations
  • impact damage
  • low-velocity impact
  • machine learning
  • residual compressive strength
Data inizio appello
15/04/2025
Consultabilità
Non consultabile
Data di rilascio
15/04/2095
Riassunto
The focus of this thesis is on improving methodologies for evaluating impact-induced damage in high-performance composite laminates.
In particular, it develops a framework that uses machine learning and high-fidelity simulations to quickly estimate the residual compressive strength of damaged laminates. The proposed method enables rapid, non-destructive assessment of structural integrity, allowing for more accurate scheduling of repair interventions and inspection intervals. Consequently, the maintenance strategies for composite structures are tailored, resulting in a reduction in aircraft downtime and a significant economic advantage for the aerospace industry.
File