logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-03242025-224717


Tipo di tesi
Tesi di laurea magistrale
Autore
GALLO, EMILIANO
URN
etd-03242025-224717
Titolo
Touch recognition on FBG-based e-skins through deep and transfer learning
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA BIOMEDICA
Relatori
relatore Oddo, Calogero Maria
relatore Filosa, Mariangela
Parole chiave
  • artificial intelligence
  • artificial neural network
  • artificial touch
  • collaborative robotic
  • convolutional neural network
  • e-skin
  • FBG
  • robotic
  • tactile skin
  • temporal convolutional network
  • transfer learning
Data inizio appello
08/04/2025
Consultabilità
Non consultabile
Data di rilascio
08/04/2065
Riassunto
Artificial touch technologies can be used in robotics and healthcare to enable safe human-robot interaction and haptic feedback. For these goals tactile sensors can be embedded in soft e-skins, obtaining devices with wide and flexible sensitive areas. In this thesis Artificial Neural Networks (ANNs) have been developed to recognize and characterize touch in Fiber Bragg Grating (FBG) based e-skins, with a particular interest towards convolutive architectures. Transfer learning has also been adopted to reduce the amount of data required for model training and speed up their development.
File