Tesi etd-03242025-224717 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
GALLO, EMILIANO
URN
etd-03242025-224717
Titolo
Touch recognition on FBG-based e-skins through deep and transfer learning
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA BIOMEDICA
Relatori
relatore Oddo, Calogero Maria
relatore Filosa, Mariangela
relatore Filosa, Mariangela
Parole chiave
- artificial intelligence
- artificial neural network
- artificial touch
- collaborative robotic
- convolutional neural network
- e-skin
- FBG
- robotic
- tactile skin
- temporal convolutional network
- transfer learning
Data inizio appello
08/04/2025
Consultabilità
Non consultabile
Data di rilascio
08/04/2065
Riassunto
Artificial touch technologies can be used in robotics and healthcare to enable safe human-robot interaction and haptic feedback. For these goals tactile sensors can be embedded in soft e-skins, obtaining devices with wide and flexible sensitive areas. In this thesis Artificial Neural Networks (ANNs) have been developed to recognize and characterize touch in Fiber Bragg Grating (FBG) based e-skins, with a particular interest towards convolutive architectures. Transfer learning has also been adopted to reduce the amount of data required for model training and speed up their development.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |