Tesi etd-03182025-140203 |
Link copiato negli appunti
Tipo di tesi
Tesi di dottorato di ricerca
Autore
DONDARINI, ALESSANDRO
URN
etd-03182025-140203
Titolo
Constraining Dark Matter Models with Gravity, Flavor and Cosmic Rays
Settore scientifico disciplinare
PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
Corso di studi
FISICA
Relatori
tutor Panci, Paolo
Parole chiave
- Astroparticelle
- Astroparticle Physics
- Dark Matter
- Fisica Teorica Delle Particelle
- Flavor
- Gravitational Waves
- Indirect Detection
- Materia Oscura
- Onde Gravitazionali
- Rivelazione Indiretta
- Theoretical Particle Physics
Data inizio appello
31/03/2025
Consultabilità
Completa
Riassunto
Dark Matter (DM) is one of the most enduring mysteries in physics, with strong evidence across multiple cosmic scales, from galactic rotation curves to large scale structures. Despite its gravitational effects, its fundamental properties—mass, interactions, and production mechanisms—remain unknown. This thesis investigates three distinct DM candidates by combining theoretical models with several constraints. First, we explore Ultralight Dark Matter (ULDM), a bosonic field with a kiloparsec-scale de Broglie wavelength that forms solitonic cores. These solitons influence supermassive black hole binaries, modifying their gravitational wave emissions through dynamical friction. Using NANOGrav data, we derive new constraints on ULDM properties. Next, we study axion-like particles with flavor-violating interactions, which can be produced via freeze-in mechanisms and evade constraints by remaining stable over cosmological timescales. In this context , we derive constraints from X-ray searches, stellar cooling, and collider experiments, identifying a viable DM mass range in the keV–MeV range. Lastly, we examine Minimal Dark Matter, focusing on electroweak multiplets such as the fermionic 5-plet. By incorporating Sommerfeld enhancement and bound state formation, we compute photon fluxes from DM annihilation and compare them to the sensitivities of FERMI-LAT and CTA. This thesis provides new insights into DM's nature and its potential detection across several experimental frontiers.
File
Nome file | Dimensione |
---|---|
PhDthesi...arini.pdf | 3.52 Mb |
Contatta l’autore |