logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-03132025-120056


Tipo di tesi
Tesi di laurea magistrale
Autore
BERTULETTI, MARTINA
URN
etd-03132025-120056
Titolo
Concept-based algorithms for 18F-FDG PET brain image analysis using Explainable Artificial Intelligence (XAI).
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA BIOMEDICA
Relatori
relatore Prof. Vozzi, Giovanni
relatore Prof. Positano, Vincenzo
relatore Dott.ssa De Santi, Lisa Anita
Parole chiave
  • 18F-FDG PET
  • Alzheimer’s disease
  • deep learning
  • explainable artificial intelligence
  • TCAV
Data inizio appello
08/04/2025
Consultabilità
Completa
Riassunto
In this thesis, we investigated the explainability of a convolutional neural network (CNN) for multiclass classification of volumetric 18F-FDG PET brain images from patients with Alzheimer's disease.
To achieve this, we applied a post hoc explanation method from the field of Explainable Artificial Intelligence: Testing with Concept Activation Vectors (TCAV). This concept-based approach is designed for the combined analysis of clinical data and biomedical images and it aims to evaluate how sensitive the model's predictions are to user-defined concepts when predicting each stage of Alzheimer's disease across all layers of the network.
The concepts of interest, identified by nuclear medicine specialists, focused on glucose hypometabolism in specific brain regions, where decreased glucose uptake is recognized as an indicator of Alzheimer’s disease.
File