Tesi etd-03122025-191102 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
VIGNA, DAVIDE
URN
etd-03122025-191102
Titolo
Design and evaluation of an ensemble of latent spaces to generate counterfactuals for explainable multiclass emotion recognition
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
ARTIFICIAL INTELLIGENCE AND DATA ENGINEERING
Relatori
relatore Ing. Alfeo, Antonio Luca
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
Parole chiave
- affective computing
- counterfactual explanations
- eXplainable Artificial Intelligence
- latent space
Data inizio appello
14/04/2025
Consultabilità
Non consultabile
Data di rilascio
14/04/2095
Riassunto
This thesis presents a post-hoc XAI-based method for generating local counterfactual explanations for any multi-class classifiers for tabular datasets (model-agnostic). The proposed approach exploits lower-dimensional latent spaces to produce class-specific counterfactuals. To assess its effectiveness, the method is evaluated on both benchmark datasets and a real-world dataset (i.e., physiological data for emotion recognition). The proposed approach is evaluated using different measures such as counterfactual generation capability, acceptability, specificity, minimality, counterfactual anomaly score, and execution time.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |