logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-03102025-172315


Tipo di tesi
Tesi di dottorato di ricerca
Autore
BERTI, ANDREA
URN
etd-03102025-172315
Titolo
Towards Trustworthy AI in Healthcare: Transparent and Interpretable Models for Medical Imaging
Settore scientifico disciplinare
IINF-05/A - Sistemi di elaborazione delle informazioni
Corso di studi
INGEGNERIA DELL'INFORMAZIONE
Relatori
tutor Prof. Cimino, Mario Giovanni Cosimo Antonio
tutor Dott.ssa Colantonio, Sara
tutor Dott.ssa Retico, Alessandra
Parole chiave
  • ai
  • ai accuracy
  • ai for clinical outcomes
  • ai reliability in healthcare
  • ai transparency
  • ante-hoc explainability
  • artificial intelligence
  • breast cancer classification
  • causality in ai
  • clinical decision support
  • dbt
  • deep learning
  • digital breast tomosynthesis
  • dl
  • explainability in healthcare
  • explainable ai
  • explainable neural networks
  • healthcare ai
  • hybrid prototypes
  • mammography
  • medical ai applications
  • medical imaging
  • model interpretability
  • neural network architecture
  • protopnet
  • trustworthy ai
  • user-centric ai design
  • xai
Data inizio appello
21/03/2025
Consultabilità
Non consultabile
Data di rilascio
21/03/2028
Riassunto
This PhD thesis focuses on creating trustworthy Artificial Intelligence (AI) systems for healthcare, specifically in medical imaging for breast cancer classification. The research addresses the need for transparent and interpretable models by exploring Explainable AI (XAI) and its relationship with causality, utilizing Deep Learning (DL) techniques and emphasizing user-centric design through clinician feedback. The thesis investigates ante-hoc explainability with ProtoPNet on mammography images, introduces an end-to-end explainable AI framework for Digital Breast Tomosynthesis (DBT) images, and proposes a novel explainable-by-design Neural Network (NN) architecture using hybrid prototypes for improved interpretability and accuracy on DBT data, ultimately aiming to enhance the reliability of AI in healthcare and contribute to better clinical outcome.
File