Tesi etd-02132025-183636 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
VENUTA, LEONARDO
URN
etd-02132025-183636
Titolo
Approximate Retrieval over Learned Sparse Representations: An Investigation of the Scalability on Massive Datasets
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Venturini, Rossano
relatore Rulli, Cosimo
relatore Nardini, Franco Maria
relatore Rulli, Cosimo
relatore Nardini, Franco Maria
Parole chiave
- approximate sparse retrieval
- large-scale retrieval
- learned sparse representation
Data inizio appello
28/02/2025
Consultabilità
Non consultabile
Data di rilascio
28/02/2028
Riassunto
Approximate sparse retrieval over learned sparse representations has emerged as a promising approach for efficient document retrieval. However, scaling these techniques to massive datasets introduces significant challenges related to indexing efficiency, query latency, and memory consumption.
This thesis investigates the scalability of state-of-the-art approximate sparse retrieval methods, with a particular focus on Seismic, a recently proposed retrieval algorithm.
This thesis investigates the scalability of state-of-the-art approximate sparse retrieval methods, with a particular focus on Seismic, a recently proposed retrieval algorithm.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |