logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-02122025-191644


Tipo di tesi
Tesi di laurea magistrale
Autore
PISTOLESI, VERONICA
URN
etd-02122025-191644
Titolo
A Memristive-Friendly Recurrent Neural Network model for time-series processing
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Gallicchio, Claudio
relatore Ceni, Andrea
relatore Milano, Gianluca
Parole chiave
  • in-materia computing
  • neuromorphic computing
  • recurrent neural networks
  • reservoir computing
  • time-series processing
Data inizio appello
28/02/2025
Consultabilità
Non consultabile
Data di rilascio
28/02/2028
Riassunto
This thesis introduces the Memristive-Friendly Echo State Network (MF-ESN) and Recurrent Neural Network (MF-RNN) as computational neural dynamical models inspired by memristive materials. It analyzes their dynamics and benchmarks their potential for complex sequence-based applications. This work bridges Reservoir Computing and in-materia computing, promising neuromorphic model advancement.
File