Tesi etd-02052025-160045 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PETACCHI, GIACOMO
URN
etd-02052025-160045
Titolo
Retrieval-Augmented Generation for Developing Secure Code in Rust
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
CYBERSECURITY
Relatori
relatore Ferrari, Gian Luigi
relatore Forti, Stefano
relatore Forti, Stefano
Parole chiave
- cybersecurity
- LLM
- RAG
- Rust
- secure code
Data inizio appello
21/02/2025
Consultabilità
Completa
Riassunto
Software engineering methodologies are rapidly evolving as new technologies and tools emerge to enhance code quality. This thesis explores the design and development of a Retrieval-Augmented Generation (RAG) chatbot intended to help developers with methods and tools to organize and structure robust and secure Rust code. The Rust programming language is recognized for its memory safety and performance and is experiencing a rise in popularity. The proposed chatbot enhances conventional Large Language Model capabilities by retrieving and incorporating knowledge from external sources. This study reviews Rust secure coding guidelines and existing RAG methodologies, proposes a comprehensive architecture for a Rust Development Assistant, and evaluates the effectiveness of the assistant.
File
Nome file | Dimensione |
---|---|
Tesi.pdf | 3.76 Mb |
Contatta l’autore |