logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-02052025-134948


Tipo di tesi
Tesi di laurea magistrale
Autore
HAKIM, RASHED
URN
etd-02052025-134948
Titolo
Design and Implementation of a predictive maintenance system for journal bearings
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
CYBERSECURITY
Relatori
relatore Prof. Marcelloni, Francesco
supervisore Dott. Ruffini, Fabrizio
Parole chiave
  • bearings
  • predictive maintenance
Data inizio appello
21/02/2025
Consultabilità
Non consultabile
Data di rilascio
21/02/2095
Riassunto
Industrial maintenance strategies have evolved from reactive and preventive approaches to predictive maintenance (PdM), leveraging data-driven techniques for enhanced efficiency. This thesis focuses on PdM for journal bearings in rotating machinery, using temperature signals for anomaly detection. Failures are identified when bearing temperatures exceed critical thresholds, with deviations in predicted versus actual temperatures signaling potential defects. The study explores various forecasting models, including decision trees and LSTMs, but emphasizes Foundation Models (FMs) for their adaptability and generalization. A real-world dataset from a turbo-generator is used to evaluate these models, demonstrating that FMs outperform conventional approaches. The findings highlight the potential of next-generation AI models in PdM, reducing unplanned downtime and improving industrial reliability.
File