Tesi etd-02042025-114855 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
GUIDOTTI, LORENZO
URN
etd-02042025-114855
Titolo
Virtual Machine Load Forecasting with Transformer-based Foundation Models
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
ARTIFICIAL INTELLIGENCE AND DATA ENGINEERING
Relatori
relatore Prof. Marcelloni, Francesco
relatore Prof. Bechini, Alessio
relatore Ing. Daole, Mattia
relatore Prof. Bechini, Alessio
relatore Ing. Daole, Mattia
Parole chiave
- cloud ops
- foundation models
- time series forecasting
- transformer
- virtual machine workload forecasting
Data inizio appello
21/02/2025
Consultabilità
Non consultabile
Data di rilascio
21/02/2095
Riassunto
Cloud computing enables efficient resource sharing across physical machines. Predicting virtual machine (VM) workloads is crucial for optimizing resource allocation but remains challenging due to complex temporal patterns and long-term dependencies. Traditional models like Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) struggle with scalability. This thesis explores foundation models, particularly transformer-based architectures, for VM workload forecasting. Results show that these models are comparable to LSTMs in performance while being more efficient and adaptable. Their scalability makes them a promising alternative for dynamic cloud environments by simplifying resource management and improving resource exploitation.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |