logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-02022025-190549


Tipo di tesi
Tesi di laurea magistrale
Autore
SINISCALCHI, ALESSIO
URN
etd-02022025-190549
Titolo
On exotic symplectic surfaces in convex 4-manifolds
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Lisca, Paolo
Parole chiave
  • exotic surfaces
  • Kirby calculus
  • symplectic geometry
Data inizio appello
21/02/2025
Consultabilità
Completa
Riassunto
A pair of smoothly embedded surfaces in a 4-manifold X is said to be exotic if they are topologically isotopic but not smoothly isotopic. Building on Hayden's work, we construct infinitely many pairs of exotic, symplectic ribbon disks in B^4. The construction is explicit, allowing the resulting disks to be drawn by hand. By capping these disks off in larger 4-manifolds, we obtain infinite pairs of exotic closed surfaces. Finally, we discuss extensions to the higher-genus case.
File