Tesi etd-01242023-100603 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PICCOLO, ANTONIO
URN
etd-01242023-100603
Titolo
Identification of radioisotope using Artificial Intelligence techniques for gamma-ray spectra measurements
Dipartimento
INGEGNERIA CIVILE E INDUSTRIALE
Corso di studi
INGEGNERIA NUCLEARE
Relatori
relatore Prof. Ciolini, Riccardo
relatore Prof. Giusti, Valerio
supervisore Dott. Fedon, Christian
relatore Prof. Giusti, Valerio
supervisore Dott. Fedon, Christian
Parole chiave
- classification
- gamma-ray
- machine learning
- pattern recognition
- spectroscopy
Data inizio appello
16/02/2023
Consultabilità
Non consultabile
Data di rilascio
16/02/2026
Riassunto
The identification of radioisotopes remains a challenging task due to several aspects such as low concentration, environmental factors, source-detector distance variations. The aim of this research is the application of three machine learning algorithms (fully connected neural network, convolutional neural network and random forest) to investigate the above-mentioned problems. The machine learning algorithms are trained on a gamma-spectrum template provided by GADRAS-DRF software. Other features to be discussed include the recognition and the identification of correct region-of-interest for the analysis, by exploiting the pattern recognition ability of neural networks. The results presented in this thesis show that Machine Learning is able to identify radionuclides inside single and composed spectra.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |