Tesi etd-01032025-143545 |
Link copiato negli appunti
Tipo di tesi
Tesi di specializzazione (4 anni)
Autore
COLLIGIANI, LEONARDO
URN
etd-01032025-143545
Titolo
Unlocking the Potential of Radiomics in Identifying Fibrosing and Inflammatory Patterns in Interstitial Lung Disease
Dipartimento
RICERCA TRASLAZIONALE E DELLE NUOVE TECNOLOGIE IN MEDICINA E CHIRURGIA
Corso di studi
RADIODIAGNOSTICA
Relatori
relatore Prof. Neri, Emanuele
relatore Dott.ssa Romei, Chiara
relatore Dott.ssa Romei, Chiara
Parole chiave
- interstitial lung disease
- IPF
- NSIP
- radiomics
- UIP
Data inizio appello
27/01/2025
Consultabilità
Non consultabile
Data di rilascio
27/01/2095
Riassunto
The purpose of this thesis is to develop a system capable of segmenting interstitial involvement in chest CT scans and identifying radiomic features characteristic of distinct patterns of lung disease. Specifically, the study focuses on differentiating fibrotic patterns, such as Usual Interstitial Pneumonia (UIP), from inflammatory patterns like Non-Specific Interstitial Pneumonia (NSIP) and distinguishing NSIP from viral pneumonia, including COVID-19. By leveraging advanced image analysis and machine learning techniques, the proposed system aims to enhance diagnostic accuracy and provide automated tools to assist clinicians in differentiating these complex and overlapping conditions.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |