| Tesi etd-02132018-112759 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di laurea magistrale
  
    Autore
  
  
    ALLEBOUDY, AHMAD SHAREEF MOSTAFA KAMEL  
  
    Indirizzo email
  
  
    ahmad.alleboudy@outlook.com,ahmad.alleboudy@outlook.com
  
    URN
  
  
    etd-02132018-112759
  
    Titolo
  
  
    Deep learning for natural language processing of patent information
  
    Dipartimento
  
  
    INFORMATICA
  
    Corso di studi
  
  
    INFORMATICA
  
    Relatori
  
  
    relatore  Bacciu, Davide
  
    Parole chiave
  
  - ConvNets
- Deep learning
- IPC
- Patent classification
    Data inizio appello
  
  
    02/03/2018
  
    Consultabilità
  
  
    Non consultabile
  
    Data di rilascio
  
  
    02/03/2088
  
    Riassunto
  
  Machine learning is crucial for providing intelligent features to text analytics platforms. In this respect, deep learning techniques have gained increasing interest in the natural language processing community in the latter years. Nevertheless, consolidated statistical models are still robust, cheaper, faster and easy to apply than deep learning models. In this thesis, the problem of analyzing textual descriptions of patents is approached by a mixture of deep learning and statistical models for word embeddings and text classification, embedding them into the Mergeflow AG analytics platform
    File
  
  | Nome file | Dimensione | 
|---|---|
| Tesi non consultabile. | |
 
		