Tesi etd-12062011-191704 |
Link copiato negli appunti
Tipo di tesi
Tesi di dottorato di ricerca
Autore
MARINELLI, SELENA
URN
etd-12062011-191704
Titolo
Zeros and degrees of characters of
finite groups
Settore scientifico disciplinare
MAT/02
Corso di studi
MATEMATICA
Relatori
tutor Prof. Dolfi, Silvio
relatore Prof. Navarro, Gabriel
relatore Prof. Navarro, Gabriel
Parole chiave
- Character theory
- irreducible character degrees
- real irreducible characters
- Vanishing and non-vanishing elements
Data inizio appello
16/12/2011
Consultabilità
Completa
Riassunto
This thesis addresses some questions about the relationship between the structure of finite groups and the set of their character degrees (Chapters 2 and 5) and the set of their vanishing elements (Chapters 3 and 4).
In Chapter 2,we study the groups G such that
whenever $1\neq\chi,\psi \in$ Irr(G) have the same degree,then there exists an automorphism $\alpha$ of G such that $\chi=\psi^{\alpha}$. We call AC the class of such groups G. In Section 2.2, we give a tight description of the
structure of solvable groups in AC. In Section 2.3, we discuss the problem of determining all the simple groups in AC.
In Chapter 3, we generalize some recent results regarding the relationship between the structure of a group and his vanishing elements.
In Chapter 4, we solve a new problem concerning vanishing elements and characters with prescribed fields of values. Let F be a subfield of $\mathbb{C}$, we write Irr$_{F}$(G) for the set of those $\chi$ in Irr(G) such that $\chi(g) \in F$ for all $g \in G$. Then we consider $F=\mathbb{R}$ and the set of real-valued (or real) irreducible characters of G.
The main goal of Chapter 4 states that if $\chi(x) \neq 0$ for all real $\chi$ in Irr(G) and all 2-elements x in G, then
G has a normal Sylow 2-subgroup.
Finally, in Chapter 5, we come back to an old problem by R. Gow (in 1975), on the groups whose irreducible character degrees can be linearly ordered by divisibility. Gow's main result is not complete: there are three undecided cases. In Chapter 5 we will settle two of these three cases.
In Chapter 2,we study the groups G such that
whenever $1\neq\chi,\psi \in$ Irr(G) have the same degree,then there exists an automorphism $\alpha$ of G such that $\chi=\psi^{\alpha}$. We call AC the class of such groups G. In Section 2.2, we give a tight description of the
structure of solvable groups in AC. In Section 2.3, we discuss the problem of determining all the simple groups in AC.
In Chapter 3, we generalize some recent results regarding the relationship between the structure of a group and his vanishing elements.
In Chapter 4, we solve a new problem concerning vanishing elements and characters with prescribed fields of values. Let F be a subfield of $\mathbb{C}$, we write Irr$_{F}$(G) for the set of those $\chi$ in Irr(G) such that $\chi(g) \in F$ for all $g \in G$. Then we consider $F=\mathbb{R}$ and the set of real-valued (or real) irreducible characters of G.
The main goal of Chapter 4 states that if $\chi(x) \neq 0$ for all real $\chi$ in Irr(G) and all 2-elements x in G, then
G has a normal Sylow 2-subgroup.
Finally, in Chapter 5, we come back to an old problem by R. Gow (in 1975), on the groups whose irreducible character degrees can be linearly ordered by divisibility. Gow's main result is not complete: there are three undecided cases. In Chapter 5 we will settle two of these three cases.
File
Nome file | Dimensione |
---|---|
thesis.final.pdf | 765.38 Kb |
Contatta l’autore |