Tesi etd-11192019-202923 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di laurea magistrale
  
    Autore
  
  
    ROCCHI, RICCARDO  
  
    URN
  
  
    etd-11192019-202923
  
    Titolo
  
  
    ANOMALY DETECTION BASED ON DEEP AUTOENCODER FOR MANUFACTURING PROCESSES
  
    Dipartimento
  
  
    INGEGNERIA DELL'INFORMAZIONE
  
    Corso di studi
  
  
    COMPUTER ENGINEERING
  
    Relatori
  
  
    relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
relatore Prof.ssa Vaglini, Gigliola
relatore Ing. Alfeo, Antonio Luca
  
relatore Prof.ssa Vaglini, Gigliola
relatore Ing. Alfeo, Antonio Luca
    Parole chiave
  
  - anomaly
 - autoencoders
 - correlation
 - data analysis
 - detection
 - discrimination
 - manufacturing
 - network
 - neural
 - pca
 - pearson
 - python
 - score
 - smart
 - tensorflow
 
    Data inizio appello
  
  
    09/12/2019
  
    Consultabilità
  
  
    Non consultabile
  
    Data di rilascio
  
  
    09/12/2089
  
    Riassunto
  
  I have developed a project called AnomalyDetector, a software written in Python using Tensorflow 2.0 for the detection of anomalies in industrial machinery using deep learning techniques.
Anomalies are very rare, so it is necessary for "AnomalyDetector" to be able to recognize them using historical data relating to a few anomalous instances.
The high-level architecture is composed of 4 main components: 3 of these implement the functions required by the 3 phases of analysis (features extraction, anomaly score calculation and anomaly discriminator) while a fourth component orchestrates the first 3, for each case study.
Anomalies are very rare, so it is necessary for "AnomalyDetector" to be able to recognize them using historical data relating to a few anomalous instances.
The high-level architecture is composed of 4 main components: 3 of these implement the functions required by the 3 phases of analysis (features extraction, anomaly score calculation and anomaly discriminator) while a fourth component orchestrates the first 3, for each case study.
    File
  
  | Nome file | Dimensione | 
|---|---|
La tesi non è consultabile.  | 
|