Tesi etd-11142018-230013 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di laurea magistrale
  
    Autore
  
  
    CORDELLA, GIOVANNI MARCO  
  
    URN
  
  
    etd-11142018-230013
  
    Titolo
  
  
    Continuous Control of UGV for Mapless Navigation: a Virtual-to-Real Deep Reinforcement Learning Approach
  
    Dipartimento
  
  
    INGEGNERIA DELL'INFORMAZIONE
  
    Corso di studi
  
  
    INGEGNERIA ROBOTICA E DELL'AUTOMAZIONE
  
    Relatori
  
  
    relatore Prof.ssa Pallottino, Lucia
relatore Ing. Franchi, Michele
  
relatore Ing. Franchi, Michele
    Parole chiave
  
  - Actor-Critic
 - Artificial Intelligence
 - autonomus robot
 - continuous action space
 - deep reinforcement learning
 - Machine learning
 
    Data inizio appello
  
  
    10/12/2018
  
    Consultabilità
  
  
    Completa
  
    Riassunto
  
  The autonomous mobile robot must be able to adapt its skills in order to react adequately in complex and dynamic environments. Different approaches can be used to handle these kinds of applications: map-based navigation or map-less navigation. This work aims to prove that robot can goes towards target position, detecting and avoiding obstacles based on low dimensional data directly from sensors without the knowledge of the environment map. This goal is achieved using Deep Reinforcement Learning approach by a virtual-to-real strategy; thus, networks are trained in simulations before being inferred in real world. DRL method is Actor-Critic method and the training process is the Deterministic Policy Gradient update process.  
    File
  
  | Nome file | Dimensione | 
|---|---|
| Tesi_di_...Marco.pdf | 2.73 Mb | 
Contatta l’autore  | 
|