Tesi etd-11132023-170051 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
POMPEI, GEREMIA
Indirizzo email
g.pompei2@studenti.unipi.it, geremiapompei@gmail.com
URN
etd-11132023-170051
Titolo
Federated Echo State Neural Networks with Exact Decentralized Consensus
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Dott. Gallicchio, Claudio
relatore Dott. Dazzi, Patrizio
relatore Dott. De Caro, Valerio
relatore Dott. Dazzi, Patrizio
relatore Dott. De Caro, Valerio
Parole chiave
- Decentralized Federated Learning
- Echo State Networks
- Federated Learning
- Pervasive Computing
Data inizio appello
01/12/2023
Consultabilità
Non consultabile
Data di rilascio
01/12/2093
Riassunto
Federated Echo State Networks proved their efficiency in learning low-resource collaborative settings where data is regulated privacy. In this thesis, we broaden the applicability of this machine learning approach to a decentralized setting, where multiple agents collaborate to learn a global readout with a one-shot, exact consensus mechanism. Experiments prove the efficacy and the efficiency of the proposed learning methodology against a state-of-the-art competitor on multiple benchmarks, characterized by different levels of statistical heterogeneity.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |