Tesi etd-11032021-222833 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
NANNINI, ALICE
URN
etd-11032021-222833
Titolo
Using Deep Learning-based Object Detection to extract context-specific information from digitized documents
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
ARTIFICIAL INTELLIGENCE AND DATA ENGINEERING
Relatori
relatore Cimino, Mario Giovanni Cosimo Antonio
relatore Vaglini, Gigliola
relatore Galatolo, Federico Andrea
relatore Bracaloni, Simone
relatore Vaglini, Gigliola
relatore Galatolo, Federico Andrea
relatore Bracaloni, Simone
Parole chiave
- artificial intelligence
- computer vision
- deep learning
- document layout analysis
- faster r-cnn
- google cloud platform
- information extraction
- neural network
- object detection
- region proposal
- theater scripts
- transfer learning
- yolo
Data inizio appello
19/11/2021
Consultabilità
Non consultabile
Data di rilascio
19/11/2091
Riassunto
The computer vision and object detection techniques developed in recent years are dominating the state of the art, and are increasingly applied to document layout analysis resolutions. This paper wants to offer a method to process digitized documents for the purpose of extracting meaningful information. By fine-tuning object detectors such as Faster R-CNN and YOLO, we attempt to identify text sections of interest with bounding boxes and classify them into a specific category depending on the context in which the document is placed. The deep learning model is implemented using the Python programming language, and is eventually integrated into the back-end of a web application hosted on the Google Cloud Platform infrastructure.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |