Tesi etd-10212019-005519 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
SLOVIKOVSKAYA, VALERIYA
Indirizzo email
vslovik@gmail.com
URN
etd-10212019-005519
Titolo
Fake news detection
Dipartimento
FILOLOGIA, LETTERATURA E LINGUISTICA
Corso di studi
INFORMATICA UMANISTICA
Relatori
relatore Prof. Attardi, Giuseppe
correlatore Prof. Lenci, Alessandro
correlatore Prof. Lenci, Alessandro
Parole chiave
- fake news detection
- fine tuning
- natural language processing
- transfer learning
- transformers
Data inizio appello
18/11/2019
Consultabilità
Completa
Riassunto
The last two years see the great advance in training general purpose language representation models using the enormous amount of unannotated text on the web, known as pre-training. The pre-trained model can then be fine-tuned on small-data NLP tasks, resulting in substantial accuracy improvements compared to training on these datasets from scratch. In this work we provide an overview of the challenging fake news detection problems viewed as a range of computational linguistic tasks and present the improved results of Fake News Detection Challenge (2017)
obtained by leveraging publicly available pre-trained transformers like BERT, RoBERTa and XLNet.
obtained by leveraging publicly available pre-trained transformers like BERT, RoBERTa and XLNet.
File
Nome file | Dimensione |
---|---|
Valeriya...final.pdf | 1.33 Mb |
Contatta l’autore |