logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-10032020-215927


Tipo di tesi
Tesi di laurea magistrale
Autore
LAZZARI, MATILDE
URN
etd-10032020-215927
Titolo
Predictive analysis of employee turnover intention: a case study
Dipartimento
FILOLOGIA, LETTERATURA E LINGUISTICA
Corso di studi
INFORMATICA UMANISTICA
Relatori
relatore Prof. Ruggieri, Salvatore
Parole chiave
  • data mining
  • employee turnover
  • explainability. HRPA
  • human resources
  • machine learning
  • survey dataset
Data inizio appello
16/11/2020
Consultabilità
Non consultabile
Data di rilascio
16/11/2090
Riassunto
This thesis aims to predict employee turnover intention with machine learning and explainability techniques using a survey dataset. The thesis contains a review of the status of the art of HR turnover theories, a review of previous works using data mining and machine learning to predict employee turnover on survey data and explainability. After the literature review, the steps of the KDD process are put in place to perform the predictions. For the classification are used 5 algorithms: Logistic regression, random forest, decision tree, XGBoost, LightGBM. After the classification the results of the best performing algorithm are explained using Partial Dependence Plot.
File