logo SBA

ETD

Digital archive of theses discussed at the University of Pisa

 

Thesis etd-09302008-142703


Thesis type
Tesi di laurea specialistica
Author
MANCARELLA, FRANCESCO
URN
etd-09302008-142703
Thesis title
Some computations in Chern-Simons quantum field theory.
Department
SCIENZE MATEMATICHE, FISICHE E NATURALI
Course of study
SCIENZE FISICHE
Supervisors
Relatore Prof. Guadagnini, Enore
Keywords
  • abelian Chern-Simons
  • Chern-Simons
  • gauge theory
  • Gauss sum.
  • homology
  • homology spheres
  • knot theory
  • knots
  • non-Abelian Chern-Simons
  • Reshetikhin
  • surgery
  • surgery invariant
  • surgery rules
  • three-manifolds
  • topological field theory
  • Turaev
  • Wilson loop
Graduation session start date
17/10/2008
Availability
Withheld
Release date
17/10/2048
Summary
RIASSUNTO DELLA TESI DI LAUREA SPECIALISTICA

Titolo: Some computations in Chern-Simons quantum field theory.

In this work, the main properties of the quantum Chern-Simons theory- which is a topological quantum field theory in three dimensions- are exposed, and the computation of a certain class of observables is produced.

In the first part of the thesis, several concepts of three-dimensional topology and of knot theory are introduced. Thus, the Abelian Chern-Simons action functional is considered, and the symmetry properties of the theory are discussed. The gauge-fixing procedure together with the construction of the perturbative expansion are reported; moreover, a definition of the observables associated with oriented framed and coloured links is given. The solution of the theory in R^3 is produced and the rules for the computation of the observables in a generic closed oriented 3-manifold are derived. These rules are applied to compute a set of link observables which are defined on lens spaces.

We give a brief description of the homology groups for closed manifolds; then we concentrate on 3-manifolds which are homology spheres and we give a convenient surgery presentation of these manifolds. We define a combinatorial invariant for closed 3-manifolds which corresponds to the normalized partition function of the Abelian Chern-Simons theory. This invariant is computed for various examples of 3-manifolds and it is shown that it is trivial for homology spheres. It is shown that such an invariant does not depend only on the homology of the manifold.
File