Tesi etd-09272020-112455 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
MERZ, ALICE
URN
etd-09272020-112455
Titolo
An extension of a theorem by Cimasoni and Conway
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Lisca, Paolo
Parole chiave
- braids
- links
- multivariate Levine-Tristram signature
- tangles
- twisted homology
Data inizio appello
23/10/2020
Consultabilità
Completa
Riassunto
The focus of this thesis is the study of certain link isotopy invariants, and we mostly concentrate on the multivariate Levine-Tristram signatures. Specifically, we study a generalization of the Gambaudo-Ghys formula, which deals with ordinary Levine-Tristram signatures, to the multivariate case. This result, proven by D. Cimasoni and A. Conway, was obtained with a geometrical approach, interpreting the multivariate signature as the signature of some branched covers of the four-ball. With a different interpretation, which makes use of twisted homology, we manage to extend their result.
File
Nome file | Dimensione |
---|---|
Tesi_A.Merz.pdf | 942.11 Kb |
Contatta l’autore |