ETD system

Electronic theses and dissertations repository

 

Tesi etd-09272016-215950


Thesis type
Tesi di dottorato di ricerca
Author
CARREGA, ALESSIO
URN
etd-09272016-215950
Title
Shadows and quantum invariants
Settore scientifico disciplinare
MAT/03
Corso di studi
MATEMATICA
Supervisors
tutor Prof. Martelli, Bruno
Parole chiave
  • S^1xS^2
  • skein spaces
  • Tait conjecture
  • Turaev
  • shadows
  • Kauffman bracket
  • Jones polynomial
  • quantum invariants
  • knot theory
  • 3-torus
Data inizio appello
08/11/2016;
Consultabilità
Completa
Riassunto analitico
We investigate quantum invariants and their topolological applications through skein theory and the use of Turaev's shadows.
We study knots and links in 3-manifold different from S^3, in particular we focus on the connected sum #_g(S^1xS^2) of g>=0 copies of S^1xS^2 and on the 3-torus T^3. Our main tools are the Kauffman bracket an the Turaev's shadows.
An introductin and a surey to skein theory and Turaev's shadows is given. We present all the main open conjectures about topological applications of quantum invariants.
Two theorems about links in S^3 are extended to links and colored knotted trivalent graphs in #_g(S^1xS^2). The first one is the Tait conjecture about crossing number and alternating links, and the second one is the Eisermann's theorem about ribon surfaces. Both are topological applications of the Jones polynomial.
We compute the skein space of the 3-torus.
Moreover we show the table of knots a links in S^1xSì2 with crossing number up to 3.
File