Tesi etd-09242020-172804 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
AMENDOLA, MADDALENA
URN
etd-09242020-172804
Titolo
Latent Assimilation: assimilating data in a latent space of a surrogate model
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Pappalardo, Luca
relatore Dott.ssa Arcucci, Rossella
relatore Dott.ssa Arcucci, Rossella
Parole chiave
- Data Assimilation
- Machine Leraning
Data inizio appello
09/10/2020
Consultabilità
Tesi non consultabile
Riassunto
Formulation of a new methodology that combines machine learning and data assimilation techniques. The methodology consists in using an Autoencoder to reduce the size of the input. In the latent space, a recurrent neural network (LSTM) is used as a surrogate for a dynamic system. The accuracy of the model is improved by using the Kalman Filter in the latent space which incorporates data (observation) collected by sensors, producing the updated state. The updated state is then reported in the original physical space by the decoder. The methodology was applied to a real test case.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |